Лабораторная работа №10

ИЗУЧЕНИЕ МУЛЬТИПЛЕКСОРОВ СЕТЕЙ SDH

1. ЦЕЛЬ РАБОТЫ

Изучение практической реализации мультиплексоров сети синхронной цифровой иерархии **TN-1X** (**Transport Node 1X**) фирмы **Northern Telecom** и установление необходимых маршрутных соединений для организации связи на участке транспортной сети заданной топологии с мультиплексорами **TN-1X**.

2. ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ

2.1. Задание по теоретической части

1. Изучить назначение, структурную схему и комплектацию ТN-1Х.

2. Привести функциональную модель процесса мультиплексирования потока

3. E12 в агрегатный сигнал STM-1 в терминах архитектурного представления с указанием основных параметров сигналов на выходах функций адаптации и завершения во всех сетевых слоях. Варианты заданий приведены в табл. 2.

2.2. Задание по расчетной части

Определить положение трибутарного блока **TU-12** для заданного потока E12 в цикле тракта высокого порядка **VC-4**. Для топологии точкаточка необходимые исходные данные приведены в табл. 4.

2.3. Задание по экспериментальной части

С целью организации связи установить для заданного потока E12 необходимые соединения компонентных и агрегатных портов и проверить правильность соединения. Вариант задания определяет преподаватель.

3. Методические указания к выполнению лабораторной работы

3.1. Методические указания к изучению теоретической части

Мультиплексоры **TN-1X** разработаны для создания агрегатного сигнала уровня STM-1 из компонентных потоков **E12**, **E31** и **E32**. Кроме того, возможен режим работы, при котором четыре потока **STM-1** мультиплексируются в агрегатный сигнал **STM-4**. Варианты режимов работы мультиплексоров **TN-1X** с параметрами электрических и оптических портов приведены в табл. 1.

						Та	блица 1
Компонентные		Компонентные		Агрегатные	Агрегатные		
сигн	алы	пор	оты			пор	ты
Обозначение	Скорость	Колич.	Колич.	Обозначение	Скорость	Колич.	Колич.
	передачи,	Электр.	Опт.		передачи,	Электр.	Опт.
	кбит/с				кбит/с		
E12	2 048	≤ 63	_	STM-1	155 520	≤ 2	≤ 2
E31	34 368	≤ 4	_	STM-1	155 520	≤ 2	≤ 2
E32	45 736	≤ 4	_	STM-1	155 520	≤ 2	≤ 2
STM-1	155 520	≤ 4	≤4	STM-4	622 080	_	≤ 2

Примечание. При организации плезиохронных третичных цифровых трактов только три порта могут использоваться одновременно.

Для организации передачи сигналов STM-1 могут использоваться электрические или оптические порты.

Мультиплексоры **TN-1X** могут работать в сетевых топологиях, приведенных на рис.1–3, как в качестве оконечных мультиплексоров **TM**, так и мультиплексоров ввода-вывода **АДМ** (табл.2).

Таблица 2

Топологии участков сети и мультиплексоры						
Вариант	Топология	Мультиплексоры				
1	Точка–точка	TM - TM				
2	Линейная цепь с функциями	TM - TM				
	ввода-вывода					
3	Линейная цепь с функциями	АДМ – ТМ				
	ввода-вывода					
4	Кольцо	АДМ – АДМ				
5	Кольцо	АДМ – АДМ – АДМ				

Рис. 1. Топология сети точка-точка

Рис. 2. Топология сети: линейная цепь с функциями ввода-вывода

Рис. 3. Топология кольцо

Структурная схема TN-1X приведена на рис.4, сокращения в названиях блоков и сигналов – в табл.3.

			Таблица 3
Номер рисунка	Сокращенное	Полное название	Интерпретация на русском
	название		
4		Payload Manager	Блок управления полезной
		(Main)	нагрузки (Основной)
4		Payload Manager	Блок управления полезной
		(Standby)	нагрузки (Резервный)
4	EOW	Engineering Order Wire	Канал служебной связи
5	ASIC	Application Specific	Специализированная ин-
		Integrated Circuit	тегральная схема (ком-
			пактная схема, разработан-
			ная для быстрого выполне-
			ния определенных прило-
			жений)
5	S	Sequential	Последовательный
5	Р	Parallel	Параллельный
5	TSI	Time Slot Interchange	Обмен тайм-слотами (вре-
			менными интервалами).

Компонентные потоки в интерфейсе G.703 через соответствующие трибутарные блоки поступают в блок управления и коммутации полезной нагрузки (**payload manager**). Кроме основного (**main**) блока, имеется также резервный блок (**standby**). Затем сигнал поступает в агрегатный блок, который также резервируется. Таким образом, каждый блок управления и коммутации полезной нагрузки имеет последовательный интерфейс с каждым компонентным и агрегатным блоками. Все интерфейсы состоят из трех линий в каждом направлении, по которым, кроме сигнала со скоростью 155520 кбит/с, передаются сигналы тактовой синхронизации 155520

кГц и сигнал сверхцикловой синхронизации (данный сверхцикл содержит 48 циклов) с частотой 166,67 Гц.

Рис. 4. Структурная схема TN-1X

На рис.4 приведены также блоки питания и блок контроля и сигнализации (subrack controller). Кроме того, через блок служебной связи EOW (Engineering Order Wire) имеется доступ к байтам E1/E2 секционного заголовка.

Процесс преобразования сигналов в мультиплексоре **TN-1X** представлен на рис.5. Комплектация мультиплексора приведена на рис.6. Основным элементом агрегатных блоков STM-1 A и B (Aggregate Unit) является процессор ASIC, в котором осуществляется функция завершения путем создания и чтения секционных заголовков, а также функция адаптации, которая заключается в определении положения указателя административного блока.

В блоках **S/P** осуществляется переход от последовательного порта в параллельный.

В блоке управления полезной нагрузки (**Payload Manager**) предварительно читается в направлении приема указатель административного блока, после этого определяется и анализируется трактовый заголовок виртуального контейнера четвертого порядка, определяются указатели трибутарных блоков, затем функция соединения осуществляет коммутацию трибутарных блоков.

Если сигналы E12 выделяются в данном мультиплексоре, то процесс выделения его из TSI показан ниже. В этом случае определяется и читается указатель трибутарного блока, читается трактовый заголовок VC-12 и производится разборка контейнера C-12.

Разработка функциональной модели процедуры мультиплексирования в терминах архитектуры и определение основных параметров сигналов могут быть выполнены по вариантам табл. 2.

1 S1	6 S2	1 S	1 3	16 S4	21 S5	2 S	6 6	34 S7	42 S8	47 S9	52 S10	57 S11	S	62 512	71 S13		80 S14
EOV Uni	V Trib t tary Uni	u- 1: y Pro t tio Tri ta Uni aı	N tec- on bu- ry t/Sp re	Tribu- tary Unit	Paylo Man ger A	ad Ag a ga A Un	gre- A ite it A U	Aggre- gate Jnit B	Payload Mana ger B	l Tribu- tary Unit	Spare	e Tribu tary U	I- Po nit U	ower Jnit	Powe Unit	r 1	Sub- rack Con- roller
							L	Fibre ocal Cr	Storage T aft Access	'ray s Panel							
Flex- ible Ac- cess Mod ule	Low Speed Ports 1 to 8 (S2)	Low Speed Ports 9 to 16 (S2)	Not	Used	Low Speed Ports 1 to 8 (S4)	Low Speed Ports 9 to 16 (S4)	High Speed Aggree gate Ports	Star Card	High Speed Aggre- gate Ports	Low Speed Ports 1 to 8 (S9)	Low Speed Ports 9 to 16 (S9)	Not Used	Low Speed Ports 1 to 8 (S11)	Lo Spe Po 9 to (S1	ow 1 eed U rts 16 11)	Not Jsed	Sta- tion Ser- vice Mod- ule
T1 1	T2 10	T3 15	ך 2	Г4 20	T5 25	T6 30	T7 35	T8 40	T9 45	T10 50	T11 55	T12 60	T13 65	T1 7	14 7 0	Г15 75	T16 80

Рис. 6. Комплектация ТN-1Х

3.2. Методические указания по выполнению расчетной части

Местоположение компонентного потока **TU-12** в цикле **VC-4** может быть определено по адресу трибутарного блока по структуре цикла **VC-4** (рис. 7 - 9). Для сигнала TU-12 в цикле **VC-4** используются четыре столбца или четыре колонки. Кроме того, номера столбцов или колонок могут быть рассчитаны по формуле:

$$X(i) = 10 + (K-1) + 3 \cdot (L-1) + 21 \cdot (M-1) + 63 \cdot (i-1),$$

где і принимает значения от 1 до 4,

К – номер TUG-3 в VC-4 от 1 до 3,

L – номер TUG-2 в TUG-3 от 1 до 7,

М – номер TU-12 в TUG-2 от 1 до 3.

На рис. 10 показан ввод потоков Е12 в STM-1 в мультиплексоре TN-1X.

Исходные данные для выполнения работы могут быть заданы преподавателем. Примеры приведены в табл. 4.

Таблица 4

	Исходные данные								
	Агрегатные блоки Ком								
Вариант	Номер рабочего	Aggregate	A T 14	V	т	м	Tributary	Номер	
_	места	Unit	AU4	ĸ	L	IVI	Unit	порта	
01	1	S 6	J1	1	1	1	S2	1	
02	1	S 6	J1	2	2	1	S2	2	
03	1	S 6	J1	3	3	2	S2	3	
04	1	S 6	J1	3	4	3	S2	4	
05	1	S 6	J1	2	5	3	S2	1	
06	1	S 7	J1	1	6	2	S2	2	
07	1	S 7	J1	1	7	1	S2	3	
08	2	S 7	J1	2	7	1	S11	4	
09	2	S 7	J1	3	6	2	S11	1	
10	2	S 7	J1	3	5	3	S11	2	
11	2	S 6	J1	2	4	3	S11	3	
12	2	S 6	J1	1	3	2	S11	4	
13	2	S 6	J1	1	2	1	S11	1	
14	2	S 6	J1	2	1	1	S11	2	
15	3	S 6	J1	3	1	2	S2	3	
16	3	S 7	J1	3	2	3	S2	4	
17	3	S 7	J1	2	3	3	S2	1	
18	3	S 7	J1	1	4	2	S2	2	
19	3	S 7	J1	1	5	1	S2	3	
20	3	S 7	J1	2	6	1	S2	4	
21	3	S 6	J1	2	7	2	S2	1	
22	4	S 6	J1	3	7	2	S2	2	
23	4	S 6	J1	3	6	3	S 2	3	
24	4	S 6	J1	2	5	3	S 2	4	
25	4	S 6	J1	1	4	2	S2	1	

125

Рис. 9. Нумерация TU-12 в VC-4

Рис. 10. Ввод компонентных потоков 2 Мбит/с в STM-1, используемый в мультиплексоре TN-1X фирмы Northern Telecom

3.3. Методические указания к выполнению экспериментальной части

Экспериментальная часть работы состоит в установлении соединения для потока со скоростью 2 Мбит/с между двумя мультиплексорами **MUX-1 – MUX-2** или **MUX-3 – MUX-4** в соответствии с Заданием и проверке правильности установки этого соединения.

Для выполнения эксперимента необходимо:

1. Обеспечить доступ к программному обеспечению **TN-1X**.

2. Удалить все ранее установленные соединения.

3. Удалить все ранее установленные шлейфы.

4. Установить новое соединение согласно Заданию. Примеры заданий приведены в табл. 5, оборудование – на рис. 11 и 12..

5. Подключить «Анализатор PDH» к одному из направлений установленного соединения.

6. Привести обоснование состояния установленного соединения по данным табл. 6 и показаниям «Анализатора PDH» .

Таблица 5

	Соединение						
Вариант	MUX-1		MU	X-2			
	Порт	KLM, адрес	KLM, адрес	Порт			
		TU-12 в VC-4	TU-12 в VC-4				
1	S2-1	111	111	S11-1			
2	S2-2	171	171	S11-2			
3	S2-3	211	211	S11-3			
4	S2-4	311	311	S11-4			

	Соединение							
Вариант	MU	JX-3	MU	X-4				
	Порт	KLM, адрес	KLM, адрес	Порт				
		TU-12 в VC-4	TU-12 в VC-4					
1	S2-1	111	111	S2-1				
2	S2-2	171	171	S2-2				
3	S2-3	211	211	S2-3				
4	S2-4	311	311	S2-4				

MUX-2

Рис. 11. Оборудование мультиплексоров 1 – 2

1. Установление соединения между компьютером и мультиплексором TN-1X

Возможна следующая последовательность установления соединения между компьютером и мультиплексором **TN-1X**:

- на рабочем столе выберите значок терминала «**PuTTY**»;

– в открывшемся окне (рис. 13) выберите тип соединения «Serial» и установите скорость обмена 19200 бит/с;

- нажмите клавишу «**Open**»;

ategory:	-					
Session	Basic options for you	Basic options for your PuTTY session				
Eogging Terminal Keyboard Pall	Specify the destination you wa Serial line COM1	ant to connect to Speed 19200				
Features	Connection type: Raw Telnet Rlo	gin 🔘 SSH 💿 Serial				
Appearance Behaviour Translation Selection Colours Connection Data Proxy Telnet Rlogin SSH Serial	Load, save or delete a stored Saved Sessions	session				
	Default Settings	Load Save Delete				
	Close window on exit: ◎ Always ◎ Never	Only on clean exit				

Рис. 13.

– откроется окно Терминала. Если не нравится «белое на черном», то войдите в меню **Change Setting** (левый верхний угол) и установите цвет фона (**Default Background**) и цвет шрифта (**Default Foreground**);

- нажмите клавишу Enter;

- отвечайте на запросы Программы:

Запрос Программы	Ответ
login	oper1
password	qwerty
identification	name

Набор символов пароля никак не отражается в рабочем окне. Если все правильно, то на экране появятся сведения о состоянии мультиплексора и **Главное Меню** Программы:

Config/, View_status/, Session/, Admin/, Maint/, Diagnostic/, Logout

Здесь и далее строчные буквы в имени пункта Меню могут быть использованы для его быстрого вызова.

Далее на экране видим отчет о состоянии аварийных сигналов. Полезно ознакомиться с его оформлением и теми сокращениями, которые при этом используются. Фрагмент такого отчета приведен в табл. 6. Примечание с пояснениями на экран не выводится.

							Таблица 6
51, Alarm Status							
511,	HP-TIM,	S4-1-J1,	Present,	М,	D,	0447,	STM-1
511.	HP-TIM,	S6-1-J1,	Present,	М,	D,	0739.	A-10,
511,	HP-TIM,	S7-1-J1,	Present,	M,	D,	0740,	B-10,
511,	NE-Lan_	S14,	Present,	С	Ρ,	0007,	SRC.
	Alarm,						
Приме- чание.	Аварий- ные сиг- налы	Место возникно- вения	Состояние аварийного сигнала: Present/ Cleared – Присутству- ет/Очищен	Важность аварийного сигнала: (C)ritical – Критиче- ский, (M)ajor – Важный, (m)inor – Незначи- тельный, Disconnected (X) – Отключив- имбор	Категория аварийного сигнала: (P)rompt – Срочный, (D)eferred – Отложен- ный, (i)nstation – Текущий, (W)arning – Предупре- ждение	Уникаль- ное число (1 ÷ 65535)	Вид тра- фика

Для пользования многоуровневым Меню желательно запомнить вспомогательные команды, которые завершают перечень команд каждого подменю:

*=up, ~=root

Первая команда позволяет вернуться по Меню на один шаг назад *=up (*Enter),

вторая – вернуться в Главное Меню

~=root(Shift+~).

Программным обеспечением мультиплексора предусмотрено ограничение неиспользуемого времени сеанса соединения длительностью 15 минут, после чего соединение разрывается. Для ликвидации этого неудобства можно вести команду, которая снимает это ограничение:

Session / Auto_logout / set 0 (s a s 0).

При желании можно установить текущую дату и время. Для этого можно ввести команду:

Maint /Operations / Clock / align <dd/mm/yyyy> <hh:mm:ss>.

2. Удаление соединений.

Снятие ранее установленных соединений следует начать с просмотра существующих соединений. Для этого необходимо войти в Меню и набрать *Config / coNnections / Viev /Connected*,

для быстрого вызова достаточно набрать строчные буквы, которые соответствуют выделенным заглавным буквам

(*c n v c*).

Далее возможно появление разных сообщений:

- в мультиплексоре есть соединения;

– в мультиплексоре нет соединений.

Если в мультиплексоре есть соединения, то сообщение примерно имеет вид:

25, Connections 251, S6–1–J1–K111, S7–1–J1–K111, BI, Ulabel = S7–1–J1–K111,

Если в мультиплексоре нет соединений, то сообщение имеет вид: *25, Connections;*

При наличии соединений для их удаления следует набрать команду, которая аннулирует все соединения в мультиплексоре

Config / coNnections / aLl_disconnect (c n l).

Затем необходимо проверить, все ли соединения удалены, и набрать команду

Config / coNnections / Viev /Connected, (c n v c).

3. Удаление шлейфов

Алгоритм снятия ранее установленных шлейфов аналогичен выше описанному за исключением того, что шлейфы удаляются по одному. Это требует запоминания результатов просмотра. Для просмотра существующих шлейфов следует набрать команду:

Diagnostic / Loopback / Viev (d l v)/

При наличии шлейфа сообщение может иметь вид *31, Loopback Configuration 311, S6–1, Loopback = Local.*

В сообщении указан порт (*S6–1*), на котором установлен шлейф. При отсутствии шлейфа появится сообщение: *31, Loopback Configuration;*

Для снятия шлейфа необходимо набрать команду: Diagnostic / Loopback / Clr S6–1 (d l c S6–1),

а затем проверить, что шлейф удален. Для этого опять набрать команду Diagnostic / Loopback / Viev (d l v)/

4. Установление новых соединений в TN-1X

В Задании на лабораторную работу указаны адреса трибутарных блоков TU-12 в цикле VC-4 (KLM) для агрегатных портов и номера компонентных портов, между которыми необходимо установить соединение.

Для выполнения соединения в каждом мультиплексоре следует набрать команду:

Config / coNnections / Connect (c n c) <SDH_aggr_payload><PDH_port>,

где <SDH_aggr_payload> – S<slot>–J<AU4>–K<KLM>; <PDH_port> – S<slot>–<port>.

Для просмотра соединения необходимо набрать команду *Config / coNnections / Viev /Connected, (с n v с).*

и убедиться, что соединение действительно установлено, если сообщение будет иметь вид:

25, Connections 251, S6–1–J1–K111, S2–5,

<u>5. Подключение «Анализатора PDH» к одному из направлений</u> установленного соединения

На рис. 14 представлен внешний вид кросса цифровых потоков 2 Мбит/с, который в данной работе используется для подключения анализатора. На рисунке указаны номера мультиплексоров и номера портов, выведенные на гнезда.

Анализатор PDH (это может быть «Морион E1») необходимо подключить к порту, соединение с которым Вы устанавливали.

				-				
	$\otimes \emptyset$	ØØ	S2-7			$\otimes \emptyset$	ØØ	S11-7
	Ø	ØØ	S2-6			$\otimes \emptyset$	ØØ	S11-6
	Ø	ØØ	S2-5			$\otimes \emptyset$	ØØ	S11-5
MUX-4	ØØ	ØØ	S2-4		MUX-2	$\otimes \emptyset$	ØØ	S11-4
	Ø	ØØ	S2-3			$\otimes \emptyset$	ØØ	S11-3
	Ø	ØØ	S2-2			$\otimes \emptyset$	ØØ	S11-2
	Ø	ØØ	S2-1			$\otimes \emptyset$	ØØ	S11-1
				_				
	$\otimes \emptyset$	ØØ	S2-7			$\otimes \emptyset$	ØØ	S2-7
	$\otimes \emptyset$	ØØ	S2-6			$\otimes \emptyset$	ØØ	S2-6
	$\otimes \emptyset$	ØØ	S2-5			$\otimes \emptyset$	ØØ	S2-5
MUX-3	$\otimes \emptyset$	ØØ	S2-4		MUX-1	$\otimes \emptyset$	ØØ	S2-4
	$\otimes \emptyset$	ØØ	S2-3			$\otimes \emptyset$	ØØ	S2-3
	Ø	ØØ	S2-2			$\otimes \emptyset$	ØØ	S2-2
	$\otimes \emptyset$	ØØ	S2-1]		$\otimes \emptyset$	ØØ	S2-1

Рис. 14. Кросс потоков 2М

6. Обоснование состояния установленного соединения

Если соединение установлено правильно, то в сетевых слоях отсутствуют дефекты (табл. 7). Сигналы аварии выключены. Анализатор PDH показывает отсутствие 10 последовательных SES. Это позволяет обосновать, что для тракта определяется период доступности.

Таблица 7.

Сетевые слои	Дефекты ближнего конца	Дефекты дальнего конца
VC-12	LP TIM	LP RDI
	LP PLM	
	HP TIM	HP RDI
VC-4	HP PLM	
	TU LOP	
	HP LOM	
STM-1 MS	AU LOP	
STM-1 RS	RS TIM	
	LOF	
STM-1 OS	LOS	

Сигналы дефектов в сетевых слоях

Примечание.

– LP TIM (Lower order Path Trace Identifier Mismatch) – несовпадение идентификатора трассы тракта низкого порядка;

– LP PLM (Lower order Path Payload Mismatch) – несовпадение полезной нагрузки тракта низкого порядка;

– **HP TIM** (High order Path Trace Identifier Mismatch) – несовпадение идентификатора трассы тракта высокого порядка;

– **HP PLM** (High order Path Payload Mismatch) – несовпадение полезной нагрузки тракта высокого порядка;

- TU LOP (Tributary Unit Loss of Pointer) - потеря указателя трибутарного блока;

– **HP LOM** (High order Path Loss of Multiframe) – потеря сверхциклового синхросигнала тракта низкого порядка;

– AU LOP (Administrative Unit Loss of Pointer) – потеря указателя административного блока;

– **RS TIM** (Regenerator Section Trace Identifier Mismatch) – несовпадение идентификатора трассы регенерационной секции;

- LOF (Loss of Frame) – потеря цикла;

-LOS (Loss of Signal) – потеря сигнала;

– LP RDI (Lower order Path Remote Defect Indication) – индикация дефекта удаленного конца тракта низкого порядка;

– **HP RDI** (High order Path Remote Defect Indication) – индикация дефекта удаленного конца тракта высокого порядка.

4. СОДЕРЖАНИЕ ОТЧЕТА

Отчет должен содержать:

1. Архитектурное представление или функциональные модели фрагмента сети для заданного варианта топологии сети и вида мультиплексоров (табл. 2) и основные параметры сигналов во всех сетевых слоях.

2. Положение трибутарного блока TU-12 для заданного потока E-12 в цикле VC-4 (табл. 4).

3. Последовательность в установлении соединения.

4. Обоснование правильности установки соединения.